The adjacency graphs of a complex
نویسندگان
چکیده
منابع مشابه
determinants of adjacency matrices of graphs
we study the set of all determinants of adjacency matrices of graphs with a given number of vertices. using brendan mckay's data base of small graphs, determinants of graphs with at most $9$ vertices are computed so that the number of non-isomorphic graphs with given vertices whose determinants are all equal to a number is exhibited in a table. using an idea of m. newman, it is proved that if $...
متن کاملCommutativity of the adjacency matrices of graphs
We say that two graphs G1 and G2 with the same vertex set commute if their adjacency matrices commute. In this paper, we find all integers n such that the complete bipartite graph Kn, n is decomposable into commuting perfect matchings or commuting Hamilton cycles. We show that there are at most n−1 linearly independent commuting adjacency matrices of size n; and if this bound occurs, then there...
متن کاملAdjacency posets of planar graphs
In this paper, we show that the dimension of the adjacency poset of a planar graph is at most 8. From below, we show that there is a planar graph whose adjacency poset has dimension 5. We then show that the dimension of the adjacency poset of an outerplanar graph is at most 5. From below, we show that there is an outerplanar graph whose adjacency poset has dimension 4. We also show that the dim...
متن کاملGraphs with a prescribed adjacency property
A graph G is said to have property P(m,n,k) if for any set of m + n distinct vertices of G there are at least k other vertices, each of which is adjacent to the first m vertices of the set but not adjacent to any of the latter n vertices. The problem that arises is that of characterizing graphs having property P(m,n,k). In this paper, we present properties of graphs satisfying the adjacency pro...
متن کاملDeterminants of Adjacency Matrices of Graphs
Let G be a simple graph with finite number of vertices. We denote by det(G) the determinant of an adjacency matrix of G. This number det(G) is an integer and is an invariant of G so that its value is independent of the choice of vertices in an adjacency matrix. In this paper, we study the distributions of det(G) whenever G runs over graphs with finite n vertices for a given integer n ≥ 1. We de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1976
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1976.101380